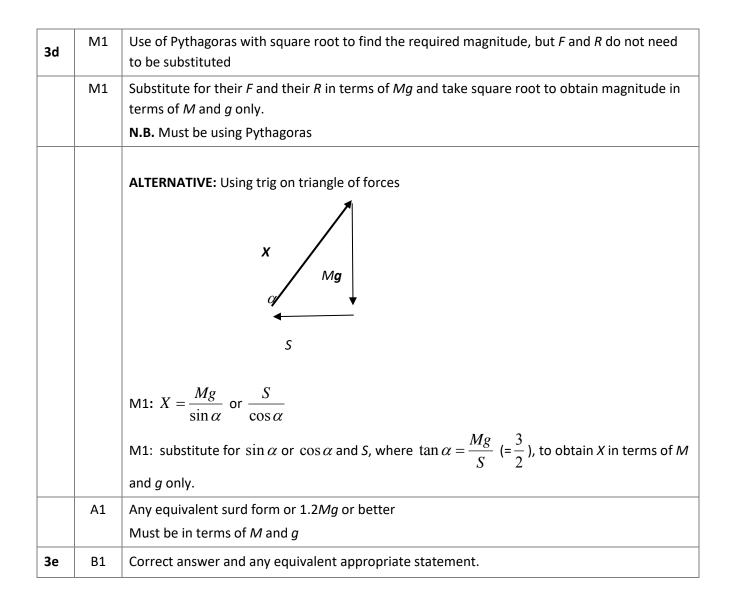
Question	Scheme	Marks	AOs
	Part (a) is a 'Show that' so equations need to be given in full to earn A marks		
1(a)	$\begin{array}{c c} C & S & B \\ \hline & G & mg \\ \hline & A & F \end{array}$		
	Moments equation: (M1A0 for a moments inequality)	M1	3.3
	$\begin{split} M(A), \ mga\cos\theta &= 2Sa\sin\theta\\ M(B), \ mga\cos\theta + 2Fa\sin\theta &= 2Ra\cos\theta\\ M(C), \ F &\times 2a\sin\theta &= mga\cos\theta\\ M(D), \ 2Ra\cos\theta &= mga\cos\theta + 2Sa\sin\theta\\ M(G), \ Ra\cos\theta &= Fa\sin\theta + Sa\sin\theta . \end{split}$	A1	1.1b
	$(\updownarrow) R = mg \mathbf{OR} (\leftrightarrow) F = S$	B1	3.4
	Use their equations (they must have enough) and $F \le \mu R$ to give an inequality in μ and θ only (allow DM1 for use of $F = \mu R$ to give an <i>equation</i> in μ and θ only)	DM1	2.1
	$\mu \ge \frac{1}{2} \cot \theta *$	A1*	2.2a
		(5)	
1(b)	$\begin{array}{c} C \\ R \\ \hline \\ 1 \\ \hline \\ 2 \\ mg \\ A \\ kmg \\ \end{array} \\ \begin{array}{c} B \\ B \\ B \\ D \\ D \\ D \\ D \\ \end{array}$		
1(0)	Moments equation:	M1	3.4
	$\begin{split} \mathbf{M}(A), \ mga\cos\theta &= 2Na\sin\theta\\ \mathbf{M}(B), \ mga\cos\theta + 2kmga\sin\theta &= 2Ra\cos\theta + \frac{1}{2}mg2a\sin\theta\\ \mathbf{M}(D), \ 2Ra\cos\theta &= mga\cos\theta + N2a\sin\theta\\ \mathbf{M}(G), \ kmga\sin\theta + Na\sin\theta &= \frac{1}{2}mga\sin\theta + Ra\cos\theta \end{split}$	A1	1.1b


		S.C. M(C), $mga\cos\theta + \frac{1}{2}mg2a\sin\theta = kmg2a\sin\theta$ M1A1B1				
		$1 + \frac{5}{4} = \frac{5k}{2}$ M1 k = 0.9 A1				
		$N = kmg - F \mathbf{OR} R = mg$	B1	3.3		
		Use their equations (they must have enough) to solve for k (numerical)	DM1	3.1b		
		k = 0.9 oe	A1	1.1b		
			(5)			
		·	(10 r	narks)		
Not	es:					
1a	M1	Any moments equation with correct terms, condone sign errors and si	et terms, condone sign errors and sin/cos confusion			
	A1	Correct equation				
	B1	Correct equation				
	DM1	Dependent on M1, for using their equations (they must have enough) give an inequality in μ and θ only (allow M1 for use of $F = \mu R$ to give an equation in μ and θ only)	and $F \leq C$	uR to		
	A1*	Given answer correctly obtained with no wrong working seen (e.g. if $F = \mu R$ anywhere, A0)	they use			
1b	M1 Any moments equation with correct terms, condone sign errors					
	A1	Correct equation				
	B1	Correct equation				
	DM1	Dependent on M1, for using their equations (they must have enough) substituted, to solve for k , which must be numerical.	with trig			
	A1	cao				

Question	Scheme	Marks	AOs
2(a)	The horizontal component of <i>T</i> acts to the left and since the only other horizontal force is friction, it must act to the right oe	B1	2.4
		(1)	
2(b)	Take moments about A or any other complete method to obtain an equation in T, M and θ only. (see possible equations below that they may use)	M1	3.1b
	$T.2a = Mga\cos\theta + 2Mg \times 1.5a\cos\theta$ (A0 if a's missing)	A1	1.1t
	Other possible equations but <i>F</i> and <i>R</i> would need to be eliminated.		
	$(\overset{\frown}{\frown}), R\cos\theta + T = F\sin\theta + Mg\cos\theta + 2Mg\cos\theta$		
	$(\nearrow), R\sin\theta + F\cos\theta = Mg\sin\theta + 2Mg\sin\theta$		
	$(\rightarrow), F = T \sin \theta$		
	M(B), R.2a cos θ = Mga cos θ + 2Mg × 0.5a cos θ + F.2a sin θ		
	$M(G), Fa\sin\theta + Ta = Ra\cos\theta + 2Mg \times 0.5a\cos\theta$		
	$M(C), R \times 1.5a \cos \theta = T \times 0.5a + Mg \times 0.5a \cos \theta + F \times 1.5a \sin \theta$		
	$T = 2Mg\cos\theta^*$	A1*	1.11
		(3)	
2(c)	e.g. Resolve vertically	M1	3.4
	$(\uparrow), R + T\cos\theta = Mg + 2Mg$	A1	1.1t
	$R = \frac{57Mg}{25} *$	A1*	1.18
		(3)	
	Other possible equations but <i>F</i> would need to be eliminated.		
	(\nwarrow), $R\cos\theta + T = F\sin\theta + Mg\cos\theta + 2Mg\cos\theta$		
	$(\nearrow), R\sin\theta + F\cos\theta = Mg\sin\theta + 2Mg\sin\theta$		
	$(\rightarrow), F = T \sin \theta$		
	$M(B), R.2a\cos\theta = Mga\cos\theta + 2Mg \times 0.5a\cos\theta + F.2a\sin\theta$		
	$M(G), Fa\sin\theta + Ta = Ra\cos\theta + 2Mg \times 0.5a\cos\theta$		
	$M(C), R \times 1.5a \cos \theta = T \times 0.5a + Mg \times 0.5a \cos \theta + F \times 1.5a \sin \theta$		
2(d)	Find an equation containing F e.g. Resolve horizontally	M1	3.4
	$(\rightarrow), F = T \sin \theta$	A1	1.1b
	Other possible equations		
	1		<u> </u>

	A1*	Given answer correctly obtained with no wrong working seen				
	M1	Must be used i.e M0 if merely quoting it.				
	A1	Correct equation, trig does not need to be substituted				
2d	M1	For any equation with F in it Correct no. of terms, dimensionally correct, condone sin/cos confusion and sign errors, each term that needs to be resolved must be resolved				
	A1*	Given answer correctly obtained with no wrong working seen				
	A1	Correct equation, T and trig do not need to be substituted				
2c	M1	For an equation in R , M , T and θ only Correct no. of terms, dimensionally correct, condone sin/cos confusion and sign errors, each term that needs to be resolved must be resolved				
		Given answer correctly obtained with <u>no wrong working seen</u> . Allow $2Mg \cos \theta = T$ But not $T = 2\cos \theta Mg$				
	A1	Correct equation, trig does not need to be substituted (Allow: $T.2a = Mga\cos\theta + 3Mga\cos\theta$)				
2b	M1	Correct no. of terms, dimensionally correct, condone sin/cos confusion and sign errors				
2a E	B1	Any equivalent explanation				
Not						
			(11)	marks		
			(4)			
		$\mu = \frac{8}{19} *$	A1*	2.2a		
		$F = \mu R$ used i.e. both F and R are substituted.	M1	3.18		
		$M(G), Fa \sin \theta + Ta = Ra \cos \theta + 2Mg \times 0.5a \cos \theta$ $M(C), R \times 1.5a \cos \theta = T \times 0.5a + Mg \times 0.5a \cos \theta + F \times 1.5a \sin \theta$				
		$M(B), R.2a\cos\theta = Mga\cos\theta + 2Mg \times 0.5a\cos\theta + F.2a\sin\theta$ $M(C) = Easin\theta + Ta = Eason\theta + 2Ma \times 0.5a\cos\theta$				
		$(\rightarrow), F = T \sin \theta$				
		$(\nwarrow), R\cos\theta + T = F\sin\theta + Mg\cos\theta + 2Mg\cos\theta$ $(\checkmark), R\sin\theta + F\cos\theta = Mg\sin\theta + 2Mg\sin\theta$				

Question	Scheme	Marks	AOs
3(a)	The normal reaction at <i>B</i> is acting to the left so it must act to the right, right as it needs to balance (oppose, counter) the force at <i>B</i> , right as it prevents the rod from sliding (slipping, falling), right as the weight (mass) of the rod will mean the rod tends to slip left, mass or weight will be pushing the rod to the left so friction will oppose that. N.B. You may see an arrow on the diagram at <i>A</i> , instead of 'right'. B0 if they say the rod is moving oe	B1	2.4
	Accept towards the wall instead of to the right.		
		(1)	
3(b)	Take moments about A	M1	3.4
	$S \times 2a\sin\theta = Mga\cos\theta$	A1	1.1b
	$S = \frac{1}{2}Mg\cot\theta *$	A1*	2.2a
		(3)	
3(c)	Resolve vertically, $R = Mg$	B1	3.3
	Resolve horizontally, $F = S$	B1	3.3
	Other possible equations:		
	Resolve along the rod, $F \cos \theta + R \sin \theta = S \cos \theta + Mg \sin \theta$		
	Resolve perp to the rod, $R\cos\theta + S\sin\theta = F\sin\theta + Mg\cos\theta$		
	$M(B), R \times 2a\cos\theta = F \times 2a\sin\theta + Mga\cos\theta$		
	$M(G), Ra\cos\theta = Fa\sin\theta + Sa\sin\theta$		
	N.B. When entering these two B marks on ePEN,		
	First B1 is for a vertical resolution, second B1 is for a horizontal resolution, and if either is replaced by a different equation, enter appropriately.		
	If both are replaced by other equations, enter in the order in which they appear in their working.		
	$F = \mu R$	B1	1.2
	$\frac{1}{2}Mg \times \frac{4}{3} = \mu Mg$	dM1	2.1
	$\mu = \frac{2}{3}$ oe Accept 0.67 or better	A1	2.2a
	S.C. For F ,, μR , B0		
	$\frac{1}{2}Mg \times \frac{4}{3}$,, μMg M1		

		2				
		$\frac{2}{3},, \mu$ A0				
		N.B. If $\mu = \frac{2}{3}$ follows this, they could score all the marks.				
			(5)			
3(d)		$\sqrt{F^2 + R^2}$	M1	3.1a		
		$\sqrt{\left(\frac{2}{3}Mg\right)^2 + (Mg)^2}$	M1	1.1b		
		$\frac{1}{3}Mg\sqrt{13}$ or 1.2Mg or better	A1	2.2a		
			(3)			
3(e)		New value of <i>S</i> would be larger as the moment of the weight about <i>A</i> would be larger	B1	3.5a		
			(1)			
			(13	marks		
Not	es:					
3a	B1	Any equivalent appropriate statement.				
3b	M1	Correct no. of terms, dimensionally correct, condone sin/cos confusion and sign errors.				
		N.B. If <i>a</i> 's never appear, M0				
	A1	Correct equation				
	A1*	Correct given answer correctly obtained, with no wrong working seen.				
		Allow $\frac{1}{2}Mg \cot \theta = S$ or $S = \frac{Mg \cot \theta}{2}$ or $\frac{Mg \cot \theta}{2} = S$ or $S = \frac{Mg}{2} \cot \theta$ or similar				
		but NOT $S = \frac{1}{2} \cot \theta$ Mg or similar				
		N.B. Allow <i>m</i> instead of <i>M</i>				
		Must be $ heta$ in final answer but allow a different angle in the working.				
3c	B1	сао				
	B1	сао				
	1	Seen anywhere, e.g. on the diagram				
	B1	seen anywhere, e.g. on the diagram				
	B1 dM 1	Using $F = \mu R$, their two equations and substitute for trig (not necessarily	correctly) to	0		
			correctly) to	0		
		Using $F = \mu R$, their two equations and substitute for trig (not necessarily	correctly) to	0		

